
The tool of thought for expert programming

Dyalog
Experimental Functionality

External Workspaces
Version 15.0

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire

RG26 5BH
United Kingdom

tel: +44(0)1256 830030
fax: +44 (0)1256 830031

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2016

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982 - 2016 by Dyalog Limited.
All rights reserved.

Version 15.0

Revision: 20160219_150

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog
Limited, Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

SQAPL is copyright of Insight Systems ApS.
UNIX is a registered trademark of The Open Group.
Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All other trademarks and copyrights are acknowledged.

Contents

1 ABOUT THIS DOCUMENT . 1
1.1 Audience ... 1

2 INTRODUCTION . 2
2.1 Benefits Offered by External Workspaces .. 2
2.2 Fundamental Limitations .. 3
2.3 Temporary Limitations .. 4
2.4 Summary of Limitations .. 4

3 PERFORMAN CE . 6
3.1 Loading .. 6
3.2 Code Execution ... 6

4 FUNCTION ALITY . 7
4.1 List External Workspaces (8659⌶) ... 7
4.2 List Attached Names (8659⌶) .. 7
4.3 Attach External Workspaces (8666⌶) .. 8
4.4 Assimilate External Workspaces (8666⌶) .. 8
4.5 Detach External Workspaces (8666⌶) ... 8
4.6 Save External Workspace (8667⌶) ... 9

5 TE CHNICAL DE TAILS . 10
5.1 External Workspaces are Read Only ... 10
5.2 Attaching, Assimilating and Detaching External Workspaces 10

APPEN DIX A WORKE D E XAMPLE . 15

 Dyalog Experimental Functionality – External Workspaces

1 About This Document

This document is intended as an introduction to external workspaces, introduced for
the purpose of improving the performance of large applications while reducing their
memory consumption and initialisation time.

The functionality and behaviour of external workspaces has not yet been finalised
and is subject to change by Dyalog Ltd. at any time.

External workspaces should be considered experimental; users are encouraged to
experiment with them and provide feedback to Dyalog Ltd. regarding the benefits
and shortcomings of the current features to help prioritise further work. Users
should be aware that the features of external workspaces may change significantly
based on feedback.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

 Dyalog Experimental Functionality – External Workspaces 2

2 Introduction

Dyalog version 14.1 introduced a new experimental file format for saving
workspaces. While a standard Dyalog workspace (a .dws file) needs to be read by
the interpreter and loaded in its entirety, the new external workspace (a .dwx file)
has a structure that allows it to be attached to the active workspace with a
minimum of file operations. This significantly decreases the start time of application
processes, especially when several processes run on the same machine.

When an external workspace is attached to the active workspace, a list of all the
names of the functions, operators and variables that it contains is loaded into the
active workspace. However, the definitions and values of these names are only
paged into virtual memory the first time that the names are referenced, and they
are not loaded into the active workspace unless their content is modified. In
addition, because external workspaces are memory-mapped by the operating
system, the definitions and values are shared by concurrent processes. This means
that, if an external workspace is already in use by one Dyalog application, then the
name list can be loaded from shared memory by another application; the same is
true for any of the names that are already in use (unless the system is low on
memory, in which situation memory-mapped pages are flushed from memory).

The use of external workspaces is only supported on 64-bit Unicode interpreters
and there are no current plans to extend this support. Because external workspaces
are memory mapped, they can only be attached by interpreters that use exactly the
same memory layout as the system that generated them. This means that big- and
little-endian interpreters cannot share external workspaces.

2.1 Benefits Offered by External Workspaces
Many large applications are currently forced to load more code than is necessary
because it is difficult to predict precisely what code will be used. The main benefit of
the external workspace technology is that applications only load code and data on
demand. The benefits of this include:

• Significantly reduced start-up times for applications
Similarly, computational sub-processses (such as isolates) can be launched in a
fraction of the time that would otherwise be required.

• Reduced workspace usage
Workspace size can be reduced or more space can be used to execute code
more efficiently. An external workspace is materialised one page at a time, as
memory is referenced. This means that the contents of comments, which are
typically in a separate part of the file from the actual code lines, are usually
only read from file if the code is edited. Similarly, running a compiled function
is unlikely to require loading the source of the function into virtual memory.

• Reduced file I/O and memory consumption
This is most apparent on machines that run several processes using the same
code and is due to the sharing of memory-mapped files.

 Dyalog Experimental Functionality – External Workspaces 3

• More efficient application execution
Objects residing in an external workspace remain outside the dynamic portion
of the workspace unless they are modified. In some applications, this means
that the complexity of the active workspace is significantly reduced. As a result,
memory allocations are generally cheaper and less memory needs to be
inspected and moved around when compactions occur.

2.2 Fundamental Limitations
Despite the benefits offered by external workspaces, they will not replace the
standard Dyalog workspace due to some fundamental limitations. These are
detailed in this section.

RESTRICTION 1:
External workspaces are read only

Multiple processes can memory-map external workspaces simultaneously; each
process that uses an external workspace is using the contents of that external
workspace directly as memory. This means that an external workspace cannot be
updated while it is in use. Instead, when an application modifies an object that
resides in an external workspace, a copy of the relevant part of the external
workspace is made in memory and the original file is not modified.

RESTRICTION 2:
External workspaces each have a fixed virtual memory address

An external workspace contains pointers to absolute memory locations contained
within it. This means that the virtual memory address to which it is
memory-mapped must be fixed when the memory-mapping occurs. When an
external workspace is created, a parameter specifies the virtual memory address at
which it will be loaded and all pointers contained within it are adjusted to fit this
address. If an application uses more than one external workspace, each external
workspace must have a different address.

RESTRICTION 3:
External workspaces cannot be shared across architectures

An external workspace cannot be converted in any way when it is used. This means
that, unlike workspaces, component files and arrays transmitted using TCP objects
or CONGA, external workspaces cannot be shared between different platforms or
versions of Dyalog.

RESTRICTION 4:
64-bit Unicode only

The benefits of memory mapping are only realisable in 64-bit address spaces. This,
combined with the other fundamental limitations, means that external workspaces
are only supported for 64-bit Unicode systems; there are no current plans to extend
this support.

 Dyalog Experimental Functionality – External Workspaces 4

2.3 Temporary Limitations
There are several restrictions when using external workspaces that could be
removed in future Dyalog versions.

RESTRICTION 1:
All objects saved must be visible from the root of the current workspace

The following cannot be saved in an external workspace:

• GUI namespaces and their derivatives
• Functions created by starting an auxiliary processor
• External functions created using name association (⎕NA)
• ⎕SM

RESTRICTION 2:
It is not possible to have more than 8 external workspaces simultaneously attached

A maximum of 8 virtual memory addresses are available for external workspaces;
these slots have identifiers 1 to 8. In a future release this limit could be significantly
increased, but the fundamental issue of needing a separate slot for each external
workspace simultaneously will remain.

RESTRICTION 3:
Cannot)SAVE a workspace that has external workspaces attached

It is not possible to)SAVE the current workspace if any external workspaces are
attached (they must be assimilated or detached first – see sections 4.4 and 4.5
respectively).

RESTRICTION 4:
Attaching an external workspace containing namespaces copies all the namespaces

Attaching external workspaces results in data being copied from the external
workspace as needed (see section 4.5). However, namespaces are always copied.

RESTRICTION 5:
Only certain content can be saved in an external workspace

The content of an external workspace is limited to namespaces, nested arrays,
simple arrays, tradfns, tradops, dfns, dops and derived functions (futures and
external variables are instantiated and become arrays). If other content (for
example, .NET objects, shared variables and COM objects) is present in a workspace
then that workspace cannot be saved as an external workspace (see section 4.6).

2.4 Summary of Limitations

Fundamental limitations:
• External workspaces are read only
• External workspaces have a fixed virtual memory address
• External workspaces cannot be shared across architectures
• 64-bit Unicode only

 Dyalog Experimental Functionality – External Workspaces 5

Temporary limitations (at version 15.0):

• All objects saved must be visible from the root of the current workspace
• It is not possible to have more than 8 external workspaces simultaneously

attached
• Cannot)SAVE a workspace that has external workspaces attached
• Attaching an external workspace containing namespaces copies all the

namespaces
• Only certain content can be saved in an external workspace

 Dyalog Experimental Functionality – External Workspaces 6

3 Performance

The main purpose of external workspaces is to reduce the execution time and
memory consumption of APL applications.

3.1 Loading
Unless an application uses a large proportion of its constituent code soon after
start-up, it is significantly faster to start that application in a nearly empty
workspace and attach external workspaces containing the rest of the code. This also
reduces the memory footprint of the application.

The performance improvement is most noticeable in an environment where several
processes run the same application on a single machine, for example, applications
using isolates and/or running on Citrix servers or other terminal servers. This is
because:

• external workspaces are memory-mapped; once one process has caused a
part of the application to be paged in, subsequent processes have very fast
access to the same part of that application.

• as the memory-mapped files are shared, only a small part of a function
needs to be copied into each active workspace that shares them; this
reduces the overall memory usage across all processes.

3.2 Code Execution
Code or data that is located in an external workspace is paged into virtual memory
the first time that it is used. This incurs a performance overhead; however,
subsequent calls to that code or data (or anything else on the same page) by the
same or any other process do not experience the same performance impact.

Similarly, the first time that the content of a name (function, operator or variable) in
an external workspace is amended also involves a performance overhead (the
content of an external workspace is read-only; modifying the content of a name
causes it to be copied into the active workspace). However, subsequent writes to
that the content of that name by the same process do not experience the same
performance impact.

Not only do subsequent calls/writes not experience the same performance impact,
their performance is often improved when compared with performing the same
operations without external workspaces. This is due to the workspace memory
manager running more efficiently when it has a smaller set of data in the main
workspace than if everything was in the main workspace. Specifically:

• more workspace is available for application data, making it easier for
memory manager algorithms to allocate memory.

• the contents of the external workspaces are ignored by compaction and
garbage collection algorithms.

 Dyalog Experimental Functionality – External Workspaces 7

4 Functionality

The operations that comprise the external workspace mechanism are implemented
using three I-Beams – 8659⌶, 8666⌶ and 8667⌶. Specifically:

• R←(8659⌶)⍬ list external workspaces (see section 4.1)
• R←slot(8659⌶)ncs list attached names (see section 4.2)
• {nc}(8666⌶)files attach external workspaces (see section 4.3)
• (8666⌶)⎕NULL assimilate external workspaces (see section 4.4)
• (8666⌶)0⍴⊂'' detach external workspaces (see section 4.5)
• {nl}(8667⌶)slot file save external workspace (see section 4.6)

4.1 List External Workspaces (8659⌶)
R←(8659⌶)⍬

The result R is a 2-column matrix listing the external workspaces that are attached
to the current workspace:

• [;1] is the slot identifier for the fixed virtual memory address of the external
workspace.

• [;2] is the full name of the external workspace file that was loaded.

The rows of the matrix (one row for each external workspace) are ordered to
correspond to the order in which the external workspaces were specified when they
were originally attached, that is, in the right argument to 8666⌶ (see Section 4.3).

4.2 List Attached Names (8659⌶)
R←slot(8659⌶)ncs

where:

• slot is the slot identifier for the fixed virtual memory address of the external
workspace.

• ncs is an integer vector that would be a valid right argument to ⎕NL; it
identifies the nameclasses and sub-classes for which the names should be listed.

R lists the names in the external workspace identified by slot. If any element of
ncs is negative, then positive values in ncs are treated as if they were negative and
R is a vector of character vectors. Otherwise, R is a simple character matrix.

 Dyalog Experimental Functionality – External Workspaces 8

4.3 Attach External Workspaces (8666⌶)
{nc}(8666⌶)files

where:

• files is a vector of character vectors of external workspaces to load, or a single
character vector (a character scalar is not acceptable). If filename extensions are
not provided, then .dwx is used.

• nc (if present) is a list of nameclass identifiers to be brought over (cannot
include sub-classes). The default is 2 3 4 9 (variables, functions, operators
and namespaces respectively).

This attaches one or more external workspaces to the active workspace. The effect
of attaching external workspaces is analogous to performing a)PCOPY (protected
copy) from the external workspace files, that is:
• names that already have a definition are preserved unaltered; if the same name

appears in more than one external workspace, then the files are searched in the
specified order and the first occurrence of the name is used.

• names in attached files immediately affect the results of system functions that
provide metadata, such as ⎕NL or ⎕NC.

If any external workspaces are already attached, then they are detached from the
active workspace before new external workspaces are attached (see section 4.5).
Multiple external workspaces cannot be attached using separate calls to (8666⌶).

4.4 Assimilate External Workspaces (8666⌶)
(8666⌶)⎕NULL

When the right argument to (8666⌶) is ⎕NULL, all referenced objects in the
external workspaces are copied into the active workspace. The active workspace
then contains all the code and data that was visible to it when the external
workspaces were attached; it can then be saved and used independently of the
external workspaces. The external workspaces that are attached to the active
workspace are then disconnected from the active workspace.

Significant space might be required to assimilate all the code in the external
workspaces into the active workspace. If a WSFULL error occurs then the operation
will fail; it cannot be rolled back and leaves the workspace in an indeterminate
(but consistent) state. In this situation, the external workspaces are not
disconnected from the active workspace as doing so could result in further errors.

4.5 Detach External Workspaces (8666⌶)
(8666⌶)0⍴⊂''

When the right argument to (8666⌶) is 0⍴⊂'' (that is, a zero-length list of names),
any existing attached external workspaces are detached.

Detaching external workspaces results in data being copied from the external
workspace as needed. However, namespaces are always copied when the external
workspace is first attached.

 Dyalog Experimental Functionality – External Workspaces 9

Before an external workspace is disconnected from the active workspace:

• if a name that was brought into the active workspace when the external
workspace was attached has not had its associated code/data changed, then the
name is expunged from the active workspace.

• if a name in the active workspace embeds references to objects residing in an
external workspace, then the entire definitions of the referenced objects are
copied (assimilated) into the active workspace. This includes (for example), tacit
functions that are derived from functions in an external workspace and arrays
that contain references to data in an external workspace. These objects must still
be functional following the disconnect.

As external workspaces are read-only, they cannot be updated while they are in use.
Instead, if an external workspace needs to be updated, it must be rebuilt. When a
new version of an external workspace becomes available, anyone using the old
version should detach it and attach the new one instead as soon as is practical.

4.6 Save External Workspace (8667⌶)
{names}(8667⌶)slot file

where:

• slot is the slot identifier (an integer in the range 1-8) for the unique fixed
virtual memory address at which to load the external workspace.

• file is a character vector of the filename for the external workspace. If a
filename extension is not provided, then .dwx is used. If a file of this name
already exists, or the file cannot be created for any reason, then the operation
will fail.

A multi-user development team might need a strategy for creating (and attaching)
cycles of external workspaces as external workspaces could remain in use for
some time by members of the development team. This should not be an issue
with distributed applications.

• names (if present) is a vector of character vectors or a matrix specifying the
names to save; this list of names of functions, operators and variables restricts
the names in the external workspace that are saved.

This creates an external workspace, optionally based on a list of names of functions,
operators or variables. Restrictions apply to the location and structure of objects
that can be placed into an external workspace; most importantly, the names must all
be visible in the root (#) of the active workspace. For a complete list of restrictions,
see section 2.4.

 Dyalog Experimental Functionality – External Workspaces 10

5 Technical Details

This section contains discussions intended to clarify the functionality of external
workspace support.

5.1 External Workspaces are Read Only
An external workspace is a read-only repository. Items within it can be modified, but
doing so can result in data being copied into the main workspace.

Consider these cases where item A is modified:
1. A is a function

• B←A will introduce a new name B into the main workspace but no new data.
• When A is edited or otherwise re-fixed, the new version will be stored in the

main workspace.
2. A is a simple array such as 1 2 3 4.

• B←A will introduce a new name B into the main workspace but no new data.
• C←A,1 will introduce a new name C and new data into the main workspace.
• A,←1 will create new data in the main workspace.

3. A is a nested array such as 'AB' 'CD'.
• B←A will introduce a new name B into the main workspace but no new data.
• A[1] ← ⊂'XY' will introduce some new data into the main workspace.

In each of these cases, the content of the attached external workspace remains
unaltered. This means that, if names of items in an external workspace are
expunged using ⎕EX and the external workspace(s) are detached and reattached,
then the items in the external workspace will be restored to their original values.
The only way to change the values in an external workspace is to recreate the entire
file.

Although an external workspace can contain data, these values should either be
constants or initial values for structures that will be copied into the workspace as
soon as the application modifies them.

5.2 Attaching, Assimilating and Detaching External Workspaces
When one or more external workspaces is attached, the following rules apply:

• When items with the same name exist in multiple workspaces, the one that is
used in the active workspace is the first one found when going through the
workspaces in the following order:
1. the active workspace
2. the external workspace specified first when attaching (see section 4.3)
3. the external workspace specified second when attaching, etc.

 Dyalog Experimental Functionality – External Workspaces 11

• When the external workspaces are assimilated:
o all references to the external workspace are resolved by copying data from

the external workspace to the active workspace as required.

• When the external workspaces are detached:
o names in the active workspace that reference data in the external workspace

are deleted (namespace references are not deleted).
o all remaining references to the external workspace are resolved by copying

data from the external workspace to the active workspace as required.

In a future version, namespaces might follow the same rules as workspaces. A
namespace would be analogous to an array – if any item within it is amended, then
the entire namespace would be considered to have been amended. This would
mean that if any item in a namespace in an external workspace is updated or
removed, or another item is added, then the entire namespace would be retained
when the external workspace is detached, otherwise none of the namespace would
be retained when the external workspace is detached.

Example

The active workspace MAIN is populated using the following assignments:
 FN1 ← {⍵ × 1}
 FN2 ← {⍵ × 2}
 NS1 ← ⎕NS ''
 NS1.A ← 1

Name Parent Value

FN1 # {⍵ × 1}

FN2 # {⍵ × 2}

NS1 # Namespace ref

A NS1 1

External workspace DWS1is populated using the following assignments:
FN1 ← {⍵ × 1.1}
FN3 ← {⍵ × 3}
V ← 'AB' 'CD'
NS1 ← ⎕NS ''
NS1.A ← 2
NS1.B ← 3

Name Parent Value

FN1 # {⍵ × 1.1}

FN3 # {⍵ × 3}

V # 'AB' 'CD'

NS1 # Namespace ref

A NS1 2

B NS1 3

 Dyalog Experimental Functionality – External Workspaces 12

External workspace DWS2 is populated using the following assignments:
FN3 ← {⍵ × 3.1}
FN4 ← {⍵ × 4}
NS2 ← ⎕NS ''
NS2.A ← 4
NS3 ← ⎕NS ''
NS3.A ← 5

Name Parent Value

FN3 # {⍵ × 3.1}

FN4 # {⍵ × 4}

NS2 # Namespace ref

A NS2 4

NS3 # Namespace ref

A NS3 5

After attaching DWX1 and DWX2 (in that order) to MAIN the following will be
accessible:
Name Parent Value Location of value Notes

FN1 # {⍵ × 1} WS FN1 in DWX1 is
inaccessible

FN2 # {⍵ × 2} WS

FN3 # {⍵ × 3} DWX1 FN3 in DWX2 in
inaccessible

FN4 # {⍵ × 4} DWX2

V # 'AB' 'CD' DWX1

NS1 # Namespace ref

A NS1 1 WS NS1.A and NS1.B in
DWX1 are inaccessible

NS2 # Namespace ref

A NS2 4 DWX2

NS3 # Namespace ref

A NS3 5 DWX2

Following these assignments:
 FN3 ← {⍵ × 3.2}
 FN5 ← FN4
 V[1] ← ⊂'XY'
 NS2.B ← 6

 Dyalog Experimental Functionality – External Workspaces 13

The following are now accessible:
Name Parent Value Location of value Notes

FN1 # {⍵ × 1} WS

FN2 # {⍵ × 2} WS

FN3 # {⍵ × 3.2} WS Updated
value

FN4 # {⍵ × 4} DWX2

FN5 # {⍵ × 4} DWX2

V # 'XY' 'CD' Split between WS and DWX1

NS1 # Namespace ref

A NS1 1 WS

NS2 # Namespace ref

A NS2 4 DWX2

B NS2 6 WS New value

NS3 # Namespace ref

A NS3 5 DWX2

The external workspaces are now disconnected. This is achieved either by
assimilating them into the active workspace or by detaching them; the result of
each of these operations is shown below.

Following assimilation of the external workspaces, the main workspace will contain:
Name Parent Value Notes

FN1 # {⍵ × 1}

FN2 # {⍵ × 2}

FN3 # {⍵ × 3.2}

FN4 # {⍵ × 4} Copied into WS

FN5 # {⍵ × 4} Copied into WS

V # 'XY' 'CD' Partially copied into WS

NS1 # Namespace ref

A NS1 1

NS2 # Namespace ref

A NS2 4 Copied into WS

B NS2 6

NS3 # Namespace ref

A NS3 5 Copied into WS

 Dyalog Experimental Functionality – External Workspaces 14

Alternatively, following detachment of the external workspaces, the main
workspace will contain the following values:

Name Parent Value Notes

FN1 # {⍵ × 1}

FN2 # {⍵ × 2}

FN3 # {⍵ × 3.2}

FN5 # {⍵ × 4} Copied into WS

V # 'XY' 'CD' Partially copied into WS

NS1 # Namespace ref

A NS1 1

NS2 # Namespace ref

A NS2 4 Copied into WS, namespace has changed

B NS2 5

NS3 # Namespace ref All namespaces in external workspaces
are retained (see section 2.3)

A NS3 5 Copied into WS

 Dyalog Experimental Functionality – External Workspaces 15

Appendix A Worked Example

This appendix comprises an annotated example that demonstrates the use of some
of the cases of the I-Beam functions described in Chapter 4 (examples of assimilate
and detach are not included).

First, load the dfns workspace:

)load dfns
C:\...\ws\dfns.dws saved Sun Apr 12 17:18:38 2015

An assortment of D Functions and Operators.

 tree # ⍝ Workspace map.
 ↑¯10↑↓attrib ⎕nl 3 4 ⍝ What's new?
 ⍕notes find 'Word' ⍝ Apropos "Word".
 ⎕ed'notes.contents' ⍝ Workspace overview.

Now compute the size of all the functions, variables and namespaces in the
workspace (approximately 6 MB):

 +/⎕SIZE ⎕NL ⍳10
5947936

Define a helper function called saveDWX to create an external workspace:

 saveDWX←8667⌶

Create an external workspace containing everything in the dfns workspace, mapped
at virtual memory address 1:

 saveDWX 1 'dfns.dwx'

If this fails due to the file already existing, then erase it and try again:

 saveDWX 1 'dfns.dwx'
DOMAIN ERROR: External workspace already exists
 saveDWX 1 'dfns.dwx'
 ∧

 {⍵ ⎕NERASE ⍵ ⎕NTIE 0} 'dfns.dwx'

 saveDWX 1 'dfns.dwx'

Clear the workspace and define two new helper functions, attachDWX and listDWX:

)CLEAR
clear ws

 attachDWX←8666⌶

 listDWX←8659⌶

 Dyalog Experimental Functionality – External Workspaces 16

Attach the external workspace to the active workspace and compute how much
workspace was consumed in doing so:
 wa←⎕WA

 attachDWX 'dfns.dwx'

 ⎕WA-wa
¯64320

(rather than consuming space, 64 KB was released due to workspace reorganisation)

Check how many names are now visible in the workspace and call the easter
function to find the date for Easter Sunday in 2015 (to prove that functions in the
attached workspace can be run successfully):

 ≢⎕NL ⍳10
273

 easter 2015
20150405

List the external workspaces that are attached to the active workspace (the first
column shows the slot identifier). Next, display the first 5 names made available by
the external workspace in slot identifier 1:

 listDWX ⍬
1 dfns.dwx

 5↑1 listDWX ⍳10
Cholesky
NormRand
UndoRedo
X
_fk

Finally, verify that the result of ⎕NL and the names exposed by the external
workspace are identical (the only difference should be the three names defined
since the)CLEAR operation):

 (⎕NL ⍳10)≡1 listDWX ⍳10
0

 ⍴1 listDWX ⍳10
270 12

 ⍴⎕NL ⍳10
273 12

 (↓⎕NL ⍳10)~↓1 listDWX ⍳10
 attachDWX listDWX wa

	1 About This Document
	1.1 Audience

	2 Introduction
	2.1 Benefits Offered by External Workspaces
	2.2 Fundamental Limitations
	2.3 Temporary Limitations
	2.4 Summary of Limitations

	3 Performance
	3.1 Loading
	3.2 Code Execution

	4 Functionality
	4.1 List External Workspaces
	4.2 List Attached Names
	4.3 Attach External Workspaces
	4.4 Assimilate External Workspaces
	4.5 Detach External Workspaces
	4.6 Save External Workspace

	5 Technical Details
	5.1 External Workspaces are Read Only
	5.2 Attaching, Assimilating and Detaching External Workspaces

	Appendix A Worked Example

